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Overall Goal of the Program
Permit heterogeneous integration of power and logic devices 
with minimum separation in SiP/SoC configuration by
• Providing sufficient cooling of high power dissipating 

devices, while also
• Providing thermal isolation to temperature sensitive 

devices using a combination of the following:
– Low conductivity Interposer  (< 25 W/m-K)

• Glass, Al2O3, (and Silicon baseline)

– High conductivity thermal interconnects (> 250 W/m-K)
• Through-layer-via (TXV) arrays
• Cu filled vias, Cu conformal vias, Cu frit filled vias

– Site specific differential cooling
• Microfluidic (3,000 W/m2-K v. 30,000 W/m2-K)
• Thermoelectric
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Chiplet on Substrate

10 W 100 mW

Microchannel
30,000 W/m2-K

Microgap
3,000 W/m2-K

Low and high power dissipating chiplets located on 
a common low conductivity substrate with TXV and 
microchannel cooling under higher flux areas.

GOAL: Examine temperature rise of individual chips (e.g. CMOS) from heat 
generated by power amplifier chip

Amplifier
CMOS

Amplifier

Microchannel

3



Thermal Isolation of Heterogeneous Devices 
August 3, 2015

Chiplet on Chip

Microchannel
30,000 W/m2-K

Microgap
3,000 W/m2-K

GOAL: Examine thermal isolation of heterogeneous SoC systems

10 W
Amplifier

100 mW
CMOS

Amplifier

Microchannel

CMOS device is patterned on base silicon wafer.   High power 
dissipating chiplets are placed on via-enhanced low-k material 
deposited on base wafer and joined to differential cooling.
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Thermal Via Arrays

• Through-layer vias (TXVs) are an accessible 
tool for inserting thermal pathways within 
a die or device package

• Regular arrays of vias result in a composite 
thermal material with unique, tunable 
properties

– Co-opted for electrical interconnection

– Anisotropic behavior used for thermal 
isolation

• Homogenization: set of modeling 
techniques where the full-detail array is 
approximated with an equivalent, 
homogeneous medium
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Top: 3D X-ray CT scan of 50 µm TSV array.  
Sekhar, et al (EPTC 2010)
Bottom: 30 µm through-hole array in glass 
interposer. Shorey, et al (ECTC 2012)
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Micro-Spreading Resistance
Two vias with the same properties exhibit different behavior when 
subjected to different boundary conditions

– A cell with isothermal boundaries compared to one with isoflux ones
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• The thermal performance of a TXV array relies on its ability to transmit heat through 
the interposer layer

• Non-uniform temperatures at interposer surfaces lead to lateral heat flux 
components, resulting in a micro-spreading resistance

• This resistance, existing at the via scale, is in addition to any system level macro-
spreading (i.e. thermal constriction) resistances

Micro-Spreading Resistance and keff,z

• The increase in thermal resistance due 
to micro-spreading can be addressed by 
assigning the material an effective 
thermal conductivity.

𝑘𝑒𝑓𝑓,𝑧 =
𝐿

𝐴(𝑅1𝐷+𝑅𝑠𝑝)

• This allows the more complicated via 
array to be modeled using an equivalent 
homogeneous medium
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Micro-Spreading Resistance and keff,z

• Thermal boundary conditions play a large role in the spreading resistance of a via array.
• Because spreading resistance doesn’t change as the length of the vias increases, high 

aspect vias have higher 𝑘𝑒𝑓𝑓
• The maximum conductivity possible is the rule-of-mixtures, when 𝑅𝑠𝑝 = 0

• This happens when the surfaces of the interposer have uniform temperatures
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1D Analysis for Different Via Geometries

• Consider 3 via array geometries, with the same 28% Cu fill factor.

• A simple system with constant cross section allows comparison with a 1D analysis

• A rule-of-mixtures for 28% Cu would predict a 3.5 °C drop across the interposer

SiC Chiplet (370 W/m-K)

Glass (1 W/m-K) with 
Copper (400 W/m-K) vias

Convection 
(30,000 W/m2-K)

0.5 W200 W/cm2 over 
0.5 x 0.5 mm2 area

Fluid at 0 °C reference

60 µm diameter
100 µm pitch

All layers are 200 mm thick
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1D Analysis for Different Via Geometries

•The temperature at the bottom 
interposer surface is non-uniform

•At the top interposer surface, the 
uniformity is to within 1 °C

• An average temperature difference 
is defined across each layer

Q: 0.5 W ΔTavg Case 1  [°C]

30 µm at 50 µm

ΔTavg Case 2 [°C]

60 µm at 100 µm

ΔTavg Case 3  [°C]

150 µm at 250 µm

SiC ~ 1 ~ 1 ~ 1

Interposer 15 24 45

Convection 66 66 66

Total Temp Rise 82 91 112
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Via Cell Used for Modeling

Glass unit cell containing 
filled copper via

Glass unit cell containing 
filled copper via and heat 
spreading film on top

TGV results may also be 
leveraged to understand 
TSV
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Micro-Spreading and Materials

• Micro-spreading exists when heat flows from a uniform material into the via array

• This resistance is most important when contacting low thermal conductivity 
materials.

– Die attach materials, organics in back-end-of-line or redistribution layers
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Effect of Film on 1D Chip Temperature

• Adding a copper film dramatically 
reduces the spreading resistance 
at the fluid interface

• It eases the transition between the 
convection boundary and the bulk 
of the interposer.  

• Going back to Case 3, the optimal 
film thickness is close to 15 µm.

ΔTavg by layer ΔTavg Case 3  [K] ΔTavg [K] 6 µm film ΔTavg [K] 15 µm film ΔTavg [K] 25 µm film

SiC ~ 1 1.08 1.08 1.08

Interposer 45 3.98 3.84 3.81

Film ~ 0.03 0.08 0.13

Convection 66 66.66 66.66 66.66

Film + Int ΔT 45 4.01 3.92 3.94
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Structural Reliability Modeling

Von Mises stress in copper via and hoop stress in 
glass substrate

• Thermal stress modeling is 
used to identify via array 
materials and dimensions that 
will have reliability concerns.

• Possible failure modes are:
– Fatigue failure of ductile via 

material (via extrusion)
– Interfacial delamination 

between via and substrate
– Brittle substrate crack growth 

• Trade-offs between reliability 
and thermal performance are 
being considered.

• For this case, at a hoop stress 
of 166 MPa in glass with a KIC

of 0.7 MPa√m, the critical 
crack size is > 5.6 mm.
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Temperature Mapping using Equivalent Model

• For the analysis, a simplified, one-component isolation model was used.  
• A "hot" chip was attached (with die attach layers, not shown) to a via-enhanced 

interposer with underside convective cooling.  
• The homogenized, equivalent model uses anisotropic interposer properties and 

introduces upper and lower micro-spreading resistances.  
• The interposer is assumed to extend far enough beyond the chip to reach a 

temperature rise of zero (no edge effects, i.e. infinite extent).
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Temperature Mapping using Equivalent Model

By using an equivalent medium for a TXV interposer, package models can be 
quickly simulated and optimized.
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Differential Cooling Analysis

Microchannel Coolers Microgap Coolers

ℎ [W/m2-K] Areal Pump Power 

[W/cm2]

ℎ [W/m2-K] Areal Pump Power 

[W/cm2]

115,000   [16] 0.04 15,400  [18] 0.0011

182,000   [17] 0.1 24,000  [18] 0.133

417,000   [17] 10 37,000  (This Research) 1.0

Heat Transfer Coefficients and Pumping Power of Microfluidic Coolers

Combining microchannel 
and microgap coolers can 
significantly increase COP 
for the combination as a 
whole.
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Microgap Cooler Design
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Conclusions
• With a reliable correlation for the effective conductivity of a TXV 

array, equivalent models for a packages with TXVs can be performed 
with low computational burden.

• Considering the micro-spreading resistance of a TXV array can lead to 
optimal via geometry and contact film conductivity and thickness.

• Micro-spreading resistance is minimized by
– High-aspect vias

– Fine via pitches

– Large via pads or even continuous films

– High-h/conductive-contact environments

• Differential microgap/microchannel coolers have been designed for a 
combination of high COP and high heat transfer.
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